Chem. Ber. 114, 3403 - 3411 (1981)

Fast Thermal Breaking and Formation of a B - N Bond in 2-(Aminomethyl)benzeneboronates¹⁾

Thomas Burgemeister^a, Ronald Grobe-Einsler^b, Reiner Grotstollen^b, Albrecht Mannschreck *^a, and Günter Wulff^{*b}

Institut für Organische Chemie, Universität Regensburg^a, Universitätsstraße 31, D-8400 Regensburg, and Institut für Organische Chemie, Universität Düsseldorf^b, Universitätsstraße 1, D-4000 Düsseldorf

Received February 16, 1981

The title compounds 1 to 6 (Table 1) are shown by ¹H, ¹¹B, and ¹⁵N NMR shifts to form an intramolecular B – N bond which, according to ¹H and ¹³C NMR, is frequently broken ($\Delta G_c^* = 40$ to 54 kJ/mol, Table 2) and re-formed.

Rasche thermische Öffnung und Schließung einer B – N-Bindung in 2-(Aminomethyl)benzolboronaten ³⁾

¹H-, ¹¹B- und ¹⁵N-NMR-Verschiebungen weisen darauf hin, daß die Titelverbindungen **1~6** (Tab. 1) eine intramolekulare B – N-Bindung ausbilden, die laut ¹H- und ¹³C-NMR mit hoher Frequenz geöffnet ($\Delta G_c^{\pm} = 40$ bis 54 kJ/mol, Tab. 2) und wieder geschlossen wird.

Boronic acid groups were used as the binding sites at enzyme-analogue built polymers for the specific binding of diols^{2,3}. Binding of the diols to these polymers occurs on formation of cyclic boronic diesters in an equilibrium reaction. Enhancement of the rate of such equilibration should improve the binding properties of the boronic acid. It was also considered desirable to fix the steric arrangement of the boronic acid by hindrance to rotation around the B - C axis. Investigations along these lines were first performed with low molecular weight analogues, where it was shown that the introduction of N(CH₃)₂ as a neighbouring group to the boronic ester function enhanced by several orders of magnitude⁴ the rate of establishing the above equilibrium in areneboronates like 1 (Table 1). Therefore, the occurrence of a B-Nbond in such compounds in solution and the kinetic stability of this bonds were investigated.

1⁵⁾, (4S)-2, 3, (4R)-4, and 5 (Table 1) were prepared by esterification of 2-(dimethylaminomethyl)benzeneboronic anhydride⁷⁾ with the corresponding 1,2-diols. Similarly, the known 2-tolueneboronic anhydride was converted to 7, (4S)-8, 9, and (4RS)-10. 6, an ester of a new areneboronic acid, was synthesized from 2-[2-(bromomethyl)phenyl]-1,3,2-dioxaborolane and isoindoline.

The NCH₂ and NCH₃ proton-NMR signals of 1 to 5 are shifted to lower field by $\Delta\delta$ = +0.3 to +0.6 relative to the corresponding signals of the boron-free amine 11

[©] Verlag Chemie GmbH, D-6940 Weinheim, 1981 0009 – 2940/81/1010 – 3403 \$ 02.50/0

R2 R' OCHa OCH2 $\delta(H)$ NCH3 Others $\delta(^{1}H)$ 13 13 (CH)2 H H - 4.03 3.83 2.53 - 14.3 (45) -2 (CH)2 H H - 4.03 3.83 2.53 1.32, 4CH3 14.5 (45) -2 (CH)2 H CH3 ≈ 4.4 3.4 - 4.3 ¹⁰ 3.83 2.53 1.32, 4CH3 14.3 (45) -2 (CH)2 H CH3 ≈ 4.4 3.4 - 4.3 ¹⁰ 3.83 2.53 1.32, 4.CH3 14.8 (45) -3 (CH)2 CH3 H H - 3.70 2.62 - 15.2 (47) -3 CH3 C H H - 3.70 4.144 - 15.2 (45) -8 (CH3) H H - 3.70 4.144 - 15.2 (45) -9 - H C - 3.70 4.144	15)										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15) (45		\mathbb{R}_2	R	R"	OCH ^{a)}	OCH ₂	δ(¹ H) NCH ₂	NCH ₃	Others	δ(¹¹ B)
$\sum_{i=1}^{7} (H_{i})_{i} = (4S) - 2 (CH_{i})_{i}^{2} = H CH_{i} = 4.4 3.4 - 4.3^{10} 3.85^{0} 2.55 1.33, 4-CH_{i} 145 \\ (4R) - 4 (CH_{i})_{i}^{2} = CH_{i} CH_{i} = -3.72 3.84 2.54 1.39, 4-CH_{i} 148 \\ (4R) - 4 (CH_{i})_{i}^{2} = CH_{i} C_{0}^{2} + 5 3.7 - 4.5^{10} 3.91^{0} 2.62 -1 15.0 \\ (4R) - 4 (CH_{i})_{i}^{2} = C_{0} + 5 C_{0}^{2} + 5 3.7 - 4.5^{10} 3.91^{0} 2.62 -1 15.0 \\ (4R) - 4 CH_{i} = C_{0} + 6 H H -3.70 4.14^{0} = -4.33, NCH_{2}^{2} n 16.1 \\ (4S) - 8 - 1 + 1 CH_{i} = -4.33, NCH_{2}^{2} n 16.1 \\ (4S) - 8 - 1 + 1 CH_{i} = -4.33, -4.4^{10} = -2.59, 2.50 -1 15.2 \\ (4S) - 8 - 1 + 1 CH_{i} = -4.46 3.77 - 4.4^{10} = -2.59, 2^{-}CH_{i}^{3} 3^{-2} - 1 \\ (4S) - 1 - 1 + CH_{i} = -4.00 2 2.59, 2^{-}CH_{i}^{3} 3^{-2} - 1 \\ (4R) - 1 - 1 - 2.53, 2^{-}CH_{3}^{3} 3^{-} - 1 \\ (4R) - 1 - 1 C_{0} + 3 - 4.00 2 2.54, 2^{-}CH_{3}^{3} 3^{-} - 1 \\ (4R) - 1 - 1 - 2.53, 2^{-}CH_{3}^{3} 3^{-} - 1 \\ (4R) - 1 - 1 - 2.53, 2^{-}CH_{3}^{3} 3^{-} - 1 \\ (4R) - 1 - 1 - 2.53, 2^{-}CH_{3}^{3} 3^{-} - 1 \\ (4R) - 1 - 1 - 2.53, 2^{-}CH_{3}^{3} 3^{-} - 1 \\ (4R) - 1 - 1 - 2.53, 2^{-}CH_{3}^{3} 3^{-} - 1 \\ (4R) - 1 - 1 - 2.53, 2^{-}CH_{3}^{3} 3^{-} - 1 \\ (4R) - 1 - 1 - 2.53, 2^{-}CH_{3}^{3} 3^{-} - 1 \\ (4R) - 1 - 1 - 2 3^{-} - 2 - 2 - 2 3^{-} - 2 - 2 3^{-} - 3^$	(45		(CH1),	Н	Н	1	4.03	3.83	2.53	1	14.3
$\sum_{c \in H_3} \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	S)-2	(CH ₁) ₂	Н	CH ₃	≈4.4	3.4-4.3 ^t	() 3.85 ^{d)}	2.55	1.32, 4-CH ₃	14.5
$ \sum_{c \in R_{3}}^{M^{1}(3)} (4R) \cdot 4 (CH_{3})_{2} H C_{4}(S_{4})_{3} C_{6}(H_{5} \approx 5.2 3.7 - 4.5b) 3.91^{\circ} 2.62 - 15.0 - 15.2 C_{7}(H_{3})_{2} C_{6}(H_{3})_{2} C_{6}(H_{3} = -4.60 3.90 2.50 - 15.2 - 15.2 C_{7}(H_{3})_{3} C_{7}(H_{3})_{4} C_{7}(H_{3})_{4} - 2.61 - 2.50 - 15.2 C_{7}(H_{3})_{4} C_{7}(H_{3})_{4} C_{7}(H_{3})_{4} - 2.51 - 2.50 2.50 - 15.2 C_{7}(H_{3})_{4} C_{7}(H_{3})_{4} - 2.51 - 2.50 2.50 - 2.50 2.50 - 15.2 C_{7}(H_{3})_{2} C_{7}(H_{3})_{4} - 2.51 - 2.50 2.50 - 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50$	3 (-)		$(CH_3)_2$	сн,	сн ^ј	I	3.72	3.84	2.54	1.39, 4-CH ₃	14.8
$\sum_{i=1}^{2} C_{R_{i}} = 5 (CH_{3})_{i} = C_{6}H_{3} = C_{6}H_{3} = C_{6}H_{3} = -4.60 = 3.90 = 2.50 = -15.2$ $6 \frac{H_{3}C}{H_{3}C} = H = H = -15.2 $	E NR ₂ (41	R)-4	(CH ₁) ₂	н	C ₆ H ₅	≈5.2	3.7-4.5 ^t	() 3.91 c)	2.62	1	15.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.∸c _{R'R} 5		(CH ₃) ₂	C ₆ H ₅	C ₆ H ₅	I	4.60	3.90	2.50	ł	15.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Q		H_2C	Н	Н	ŀ	3.70	4.14 ^{e)}	1	4.33, NCH ₂ ^ŋ	16.1
$ \begin{split} \overset{L}{\overset{CH_3}{\overset{L}{}}} & (45)\textbf{-8} & - & H & CH_3 & \approx 4.6 & 3.7 - 4.4^{b)} & - & - & 2.54, 2^{*}\text{-CH_3} & 32.0 \\ \overset{R}{\overset{L}{\overset{L}{}}} & \overset{R}{\overset{D}{\overset{D}{}}} & \textbf{9} & - & CH_3 & CH_3 & - & 4.00 & - & - & 2.52, 2^{*}\text{-CH_3} & 31.9 \\ \overset{R}{\overset{L}{\overset{L}{}}} & (4RS)\textbf{-10} & - & H & C_6H_5 & \approx 5.5 & 4.0 - 4.7^{b)} & - & 2.60, 2^{*}\text{-CH_3} & 32.7 \\ \overset{CH_3}{\overset{M}{\overset{M}{}}} & \textbf{11}^{6} & (CH_3)_2 & - & - & - & 3.32 & 2.20 & 2.32, C - CH_3 & - \\ \end{array}$	7		t	Н	Н	I	4.25	1	I	2.50, 2'-CH ₃	32.3
$\sum_{i=1}^{N} p_{i} = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = $	^{2-сн} 3 (45	S)-8	I	Н	СН3	≈4.6	3.7-4.4 ^t	-	ł	2.54, 2'-CH ₃ 1.35, 4-CH ₃	32.0
$(4RS)-10 - H C_6H_5 \approx 5.5 4.0-4.7^{b)} 2.60, 2'-CH_3 32.7 \\ \bigvee_{M_6}^{CH_3} 11^{6)} (CH_3)_2 3.32 2.20 2.32, C-CH_3 M_6 $	و "الاللا م		ſ	CH3	СН3	i	4.00	I	1	2.52, 2'-CH ₃ 1.43, 4-CH ₃	31.9
$\sum_{Me}^{CH_3} 11^{60} (CH_3)_2 - - - - 3.32 2.20 2.32, C-CH_3 -$	(4)	RS)-10	ł	Н	C ₆ H5	≈5.5	4.0-4.7 ^t	- (0	ļ	2.60, 2'-CH ₃	32.7
	-CH ₂ Ne(CH ₃) ₂ 11	(9	(CH ₃) ₂	I	i	I	1	3.32	2.20	2.32, C–CH ₃	I

3404

(Table 1). A similar trend is detected for the trimethylamine/trimethylborane complex relative to free trimethylamine ($\Delta\delta = +0.27$ at $-70 \,^{\circ}C$)⁸⁾ and for the socalled triethanolamine borate⁹⁾ relative to tris(2-hydroxyethyl)amine (triethanolamine) ($\Delta\delta = +0.5$ at $+35 \,^{\circ}C$)¹⁰⁾. We conclude that our 2-(dimethylaminomethyl)boronates 1-6 exist in solution at room temperature as spiro compounds with intramolecular B-N bonds (see formula in Table 1), either exclusively or in fast equilibrium¹¹⁾ with a small amount of the B-N-opened analogue. Such bonds are known for some other N-containing boranes^{9,12,13,14)}. *Inter*molecular B-N bonding is apparently not significant, as judged from molecular weight measurements¹⁵⁾ for 4 and from the insensitivity of its ¹H shifts to a concentration change by a factor of 10.

The ¹¹B shifts of 1 to 6 are to higher field by $\Delta \delta = -17$ to -18 relative to the nitrogen-free boronates¹⁶⁾ 7 to 10 (Table 1). This finding for our 2-(aminomethyl)-benzeneboronates indicates *tetra*coordinate boron which generally¹³⁾ shows a shift to higher field compared with a tricoordinate environment¹⁸⁾.

The ¹⁵N shift of $4 (\delta = -327.2, [D_6]$ acetone, $32 \circ C$, referred to ¹⁵NO₃^{\odot}) is to lower field by $\Delta \delta = +25.7$ relative to the boron-free amine 11 ($\delta = -352.9$ neat)¹⁹). This finding for 4 again indicates a tetracoordinate nitrogen, which generally²⁰ shows a shift to lower field compared with a tricoordinate one.

The ¹H and ¹³C NMR spectra of 1 to 6 show reversible broadening and splitting of certain signals at temperatures below -15 °C. For example, geminal CH₂ protons of 5 show unequal shifts (Figure 1). The coupling constants ²J_{HH} = 8.8 and 14.4 Hz thus obtained served for the distinction²¹ between OCH₂ and NCH₂ absorptions in Figure 1. Such ²J_{HH}-values (Table 2) were also used for the assignments of CH₂ groups in Table 1. ΔG_c^* was determined²² from the coalescence of corresponding signals (Table 2).

Figure 1. ¹H PFT-NMR (90 MHz) of CH_2 groups of 5 in CD_2Cl_2 . See Figure 2 for formulae Chem. Ber. *114* (1981)

					H ₂ C-CR'R"				
	\mathbf{R}_2	R'	R,'	Nuclei used	T [°C]	$\Delta \delta_T [-]$	² Ј _{нн} [Нz]	<i>T</i> _c [°C]	ΔG_{c}^{*} [kJ/mol
{				N – CH,	- 11 -	< 0.03	i		
		2	ב	$N-CH_3$	- 71	< 0.03	1	I	ł
	2/5112)	5	5	N-CH,	- 30	<0.1	1	t	ł
				$0 - CH_2$	- 71	<0.02	i	ė	i
				$N-CH_2$	- 88	0.26	14.1	ė	i
				$N-CH_3$	91	0.17	I	- 73	41.7 ± 0.8
	(nJ)	ŋ	D	$N - CH_3$	- 89	1.59	ł	- 73	40.0 ± 1.0
	(2113)2	cn ₃	сп.)	$0-CH_2$	- 88	0.08	8.5	ė	i
				c-CH,	- 89	1.46	I	- 75	40.1 ± 1.0
				$C - CH_3$	- 91	< 0.03	I	ż	ć
		:		$N - CH_3$	- 50	0.05 c)	I	- 30	53.5 ± 0.8
	(CH3)2	Ę	C6H5	$N - CH_3$	- 30	0.85 c)	1	≈ - 15	54.0 ± 1.6
				$N-CH_2$	- 73	0.18	14.4	≈ - 38	49.1 ± 1.6
				$N - CH_3$	- 73	~ 0.04	ł	ċ	i
	(CH ₃) ₂	C ₆ H,	C ₆ H,	$N - CH_3$	- 40	1.83	t	≈ - 27	49.4 ± 1.6
				$0 - CH_2$	- 73	0.52	8.8	- 31	48.4 ± 0.8
				C6HS	- 40	0.87	I	≈ – 32	49.9 ± 1.6
				$N - CH_2^{a}$	- 92	0.63	14	- 52	43.4 ± 0.8
	Д Ч	н	Н	$0 - CH_2$	- 92	~0.3 ^{b)}	ė	i	i

Th. Burgemeister, R. Grobe-Einsler, R. Grotstollen, A. Mannschreck, and G. Wulff

As far as the underlying process or processes are concerned, motions of nonplanar intact five-membered rings would have much lower ²³⁾ ΔG_c^{*} -values than observed here. Therefore, opening of the B - N or B - O bond in our dioxoborolanes must occur. We assume B - N opening since B - N has a much lower bond energy²⁴⁾ and is opened much faster in a somewhat similar oxazaborolidine¹⁴). The B-N opened 2-(aminomethyl)benzeneboronates like 12 (Figure 2) have not been detected in the ¹H NMR spectra at low temperatures and should therefore correspond to higher free enthalphy than the spiro ground states. The processes responsible for the spectral changes in Table 2 are symbolized in Figure 2 for 5 as an example. Interconversions $5 \Rightarrow 5'$ are brought about by B-N bond breaking, nitrogen inversion, CH_2-N rotation, and B-N bond formation; the environments of $(CH_3)^1/(CH_3)^2$ are thereby exchanged. Interconversions $(R) \neq (S)$ are brought about by B-N bond breaking, boron inversion, C-B rotation, and B-N bond formation; the environments of $(CH_3)^1/(CH_3)^2$, H^1/H^2 , H^{3}/H^{4} , and C^{1}/C^{2} are thereby exchanged. Since the barriers to the above inversions and rotations must be considered as low with regard to the observed barriers (Table 2), B - N bond breaking is apparently rate-determining^{*}). From these facts we derived $k_e =$ k/2, where k is the rate constant for the B-N bond breaking (Figure 2) and k_e the experimental rate constant. This factor of 2 has been applied for the calculations of ΔG_c^{\pm} in Table 2.

Figure 2. Intramolecular processes in 5. Indices 1 and 2 as well as 3 and 4 mark individual groups (not environments). Cf. text for description of processes

^{*)} Note added in proof (15.7.81): Similar intramolecular Sn – N bond breaking and formation have been described by G. van Koten, J. T. B. H. Jastrzebski, J. G. Noltes, G. J. Verhoeckx, A. L. Spek, and J. Kroon, J. Chem. Soc. Dalton Trans. 1980, 1352, and earlier papers.

The two methyl signals (intensities 1:1) in the ¹H and ¹³C spectra of 4 at low temperatures are assigned to diastereotopic groups in only one of the two possible diastereomers, because their shift differences (Table 2) are similar to the ones of 5 which cannot form diastereomers. From their line-shapes, we suggest that the absorption of the less abundant diastereomer is hidden. The ¹³C spectrum of 2 at -60 °C indicates both diastereomers in a $\approx 2:1$ ratio.

Inter-comparisons of our ΔG_c^* -values, e.g. for 3 and 5, must be postponed until further measurements, including the ones of ΔS^* , have been carried out.

The only known barriers to B-N bond breaking seem to be the ones in the trimethylamine/trimethylborane complex⁸⁾ ($\Delta G^{+} = 54 \text{ kJ/mol}, -24^{\circ}\text{C}$) and in an oxazaborolidine¹⁴⁾ ($\Delta G^{+} = 51 \text{ kJ/mol}^{25}$, -17°C). Their height is similar to the results in Table 2. The ease and reversibility of these reactions suggest that NMR at room temperature averages between free and complexed amines and boronates. Since the latter are obtained optically active more easily than boranes, our above results may be extended to the study of the intermolecular interaction between chiral amines and boronates by NMR splittings due to diastereomeric complexes²⁶).

This research was supported by Deutsche Forschungsgemeinschaft, the Minister für Wissenschaft und Forschung von Nordrhein-Westfalen, and Fonds der Chemischen Industrie. We are grateful to Mr. H.-H. Henschel for running some of the spectra and to Dipl.-Phys. R. Küspert for helpful discussions.

Experimental Part

Melting points: Kofler-Weygand hot bank (Leitz). – Microanalyses: Microanalytical laboratory Dr. F. Pascher, Bonn, or microanalytical laboratories of the Universities of Bonn and Düsseldorf. – ¹H NMR: Some spectra were taken on Varian EM 360 or EM 390 at 32 °C. Most measurements were performed on a Bruker WH-90 (normal temperature + 25 °C) with 8 K data points for the interferogram and sweep widths between 500 and 900 Hz; temperatures were measured according to *Van Geet*²⁷⁾ by calibration of the Bruker methanol tube vs. a Varian methanol tube on a Varian XL-100 spectrometer. – ¹¹B NMR: Bruker WH-90 at 30 °C. – ¹³C NMR: Bruker WH-90 (normal temperature + 32 °C) with 8 K data points for the interferogram and sweep widths between 3000 and 4200 Hz; temperatures were measured by a "Thermocoax" thermocouple (Chromel-Alumel) from Philips GmbH, Kassel. – Optical rotations: Perkin-Elmer 241 polarimeter. – Mol. weight determinations: Vapour-phase osmometer (Knauer).

The preparations of 1^{5} , 11^{6} , isoindoline²⁸, 2-tolueneboronic anhydride²⁹, and 2-(dimethylaminomethyl)benzeneboronic anhydride⁷ have been described before. The desired diols (S)-1,2-propanediol³⁰, 2-methyl-1,2-propanediol³¹, (R)-1-phenyl-1,2-ethanediol³², and 1,1-diphenyl-1,2-ethanediol³³ were prepared as described.

General procedure for the preparation of boronic esters (Table 3): Equimolar amounts of substituted boronic anhydrides (triphenylboroxins) and diols were stirred mechanically in boiling toluene, the water being collected in a Dean and Stark apparatus. After evaporation under vacuum the residue was destilled or crystallized. ¹H and ¹¹B NMR spectra see Table 1, ¹³C NMR see Table 4.

						Table	Synthe	esized bo	ronic esters							
			Nam	υ		Yield (%)	b.p. p[1 (m.p.	[°C]/ [orr]) [°C]	Optical rote	ation	Mol. formula (Mol. weight	Calc. Found	ပပ	нн	m m	zz
(4S)-2	(N-1 (4S)-	B)-2-[2-(Dim 4-methyl-1,3	thylami,2-dioxa	inomethy! borolane	l)phenyl]-	- 72	124 - 1	25/0.1 [$\alpha _{436}^{20} = +3$ c = 2.1, CF	4.2 4.2(N)	C ₁₂ H ₁₈ BNO ₂ (219.1)		65.79 64.78	8.28 8.12	4.93 6 4.86 6	.39
e	(N-1 4,4-di	B)-2-[2-(Dim imethyl-1,3,2	ethylami 2-dioxabo	inomethy	l)phenyl]-	. 63	92/0.0	5	I		C ₁₃ H ₂₀ BNO ₂ (233.1)		66.98 66.69	8.65 8.68	4.64 6 4.74 5	.01 86
(4 <i>R</i>)-4	4 (N-1 (4R)-	B)-2-[2-(Dim -4-phenyl-1,3	hethylam 3,2-dioxa	inomethy borolane	l)phenyl]-	- 71	(86 – 8	(8)	$[\alpha]_{589}^{20} = -3$ c = 2.9, CF	9.1 HCl ₃)	C ₁₇ H ₂₀ BNO ₂ (281.2)		72.62 72.84	7.17 6.94	3.85 4 3.78 5	86 10
ŝ	(<i>N</i> – <i>I</i> 4,4-di	B)-2-[2-(Dim iphenyl-1,3,2	tethylam 2-dioxabo	inomethy	l)phenyl]	- 74	(129–	132)	1		C ₂₃ H ₂₄ BNO ₂ (357.3)		77.33 77.30	6.77 6.87	3.03 3.2.95 3	.82
٢	2-(2-1	Folyl)-1,3,2-(dioxabor	olane		8	68/0.3		l		C ₉ H ₁₁ BO ₂ (162.0)		66.73 66.74	6.84 6.85	11	1 1
(S)- 8	(S)-4	-Methyl-2-(2	-tolyl)-1,	3,2-dioxa	lborolane	78	63 – 65	5/0.4	$ [\alpha]_{436}^{20} = +3 c = 0.7, CF $	7.6 HCl ₃)	C ₁₀ H ₁₃ BO ₂ (176.0)		68.24 68.03	7.44 14.7	11	1 1
6	4,4-D	Nimethyl-2-(2	-tolyl)-1	,3,2-dioxa	aborolane	11	46/0.0	5	1	•	C ₁₁ H ₁₅ BO ₂ (190.1)		69.52 69.28	7.96 8.08	5.69 5.83	1 1
(<i>RS</i>)-1	10 (<i>RS</i>)-	-4-Phenyl-2-((2-tolyl)-	1,3,2-dio [,]	kaborolar	1e 60	144/0.	T.	I		C ₁₅ H ₁₅ BO ₂ (238.1)		75.67 75.71	6.35 6.41	11	1 1
				Table	4. Shifts	δ(¹³ C) i	n CD ₂ Cl ₂	at +32	°C. See Tabl	le 1 for f	ormulae					
	C-1′	C-2′	Ŀ.	Carbons C-2	in C ₆ H5 C-3	C-4	C-3′	C-4' (not 2	C-5' Issigned)	C-6′	OCH ₂	VCH ₂	NCH ₃		Furthe	r IS
-	a)	140.76		1		1	131.10	127.86	127.51	123.21	65.16	64.77	45.30		1	
e	≈ 144 ^{b)}	140.46		I			130.94	127.59	127.36	123.01	76.16	64.52	45.17		8.50, 4 6.84, 6	4 CH
4	a)	140.48	144.43	125.90	128.48	C)	131.06	c)	Û	123.09	72.59	64.85	45.30		7.67,	0-4
S	≈ 143 ^{b)}	140.46	148.63	126.16	128.27	126.71	131.47	127.80	127.45	122.96	75.41	65.05	45.56	~	1.98,	0-4
П	137.5 ^{d)}	137.63 ^{d)}		1			130.40	130.05	127.19	125.67	1	62.54	45.46		9.08,	C-CH
a) Not	observed.	- ^{b)} Broad	signal.	- c) The :	signals at	δ = 12 [°]	7.23, 127.	54, and	127.86 could	not be	assigned d)	Assignm	ent ma	y be r	eversed	

2-[2-(Bromomethyl)phenyl]-1,3,2-dioxaborolane: 18.6 g (0.115 mol) 2-(2-tolyl)-1,3,2-dioxaborolane (7), 20.6 g (0.116 mol) N-bromosuccinimide and 0.3 g benzoyl peroxide were refluxed in 650 ml carbon tetrachloride for 2 h under illumination with a 500 W photolamp. The mixture was filtered, evaporated in vacuo and destilled. Yield: 15.8 g (59%), b. p. 108 °C/0.6 Torr.

C₉H₁₀BBrO₂ (240.9) Calc. C 44.86 H 4.19 Found C 45.00 H 4.19

(N-B)-2-[2-(2-Isoindolinylmethyl)phenyl]-1,3,2-dioxaborolane (6): To 2.5 g (10.4 mmol) of 2-[2-(bromomethyl)phenyl]-1,3,2-dioxaborolane in 100 ml of toluene 2.5 g (21.0 mmol) of isoindoline in 50 ml of toluene were added. The mixture was kept at room temperature for one day, then filtered. The filtrate was evaporated to dryness. 1.4 g (48%) of colourless crystals: m. p. $173 - 175 \,^{\circ}$ C (benzene). $- {}^{1}$ H and 11 B NMR: Table 1.

> C17H18BNO2 (279.1) Calc. C 73.15 H 6.50 B 3.87 N 5.02 Found C 73.39 H 6.49 B 3.71 N 4.91

- ²⁾ G. Wulff, A. Sarhan, and K. Zabrocki, Tetrahedron Lett. 1973, 4329.
- ³⁾ G. Wulff, W. Vesper, R. Grobe-Einsler, and A. Sarhan, Makromol. Chem. 178, 2799 (1977).
- ⁴⁾ G. Wulff and R. Grobe-Einsler, unpublished results.
- 5) R. Clemént and M. Francois, C. R. Acad. Sci. Ser. C 265, 923 (1967).
- ⁶⁾ S. W. Kantor and C. R. Hauser, J. Am. Chem. Soc. 73, 4122 (1951).
- ⁷⁾ R. T. Hawkins and H. R. Snyder, J. Am. Chem. Soc. 82, 3863 (1960).
- ⁸⁾ A. H. Cowley and J. L. Mills, J. Am. Chem. Soc. 91, 2911 (1969).
- ⁹⁾ Triethanolamine borate in solution apparently forms an intramolecular B-N bond: D Fenske and H. J. Becher, Chem. Ber. 105, 2085 (1972), and references cited therein.
- ¹⁰⁾ A. Mannschreck and H.-H. Henschel, unpublished result.
- ¹¹⁾ Such equilibria are known for B-(aminoalkyl)borinates: V. S. Bogdanov, V. G. Kiselev, A. D Naumov, L. S. Vasil'ev, V. P. Dimitrikov, V. A. Dorokhov, and B. M. Mikhailov, J. Gen Chem. USSR 42, 1539 (1972) [Chem. Abstr. 77, 139370d (1972)].
- 12) A. Jonczyk, B. Serafin, and H. Rutkowska, Rocz. Chem. 45, 1793 (1971) [Chem. Abstr. 76 113286k (1972)]; R. Köster, Pure Appl. Chem. 49, 765 (1977), and references cited therein.
- 13) Review: H. Noth and B. Wrackmeyer, Nuclear Magnetic Resonance Spectroscopy of Boror Compounds, p. 8, 287, Springer-Verlag, Berlin 1978.
- 14) H. Kessler, G. Zimmermann, H. Fietze, and H. Möhrle, Chem. Ber. 111, 2605 (1978).
- ¹⁵⁾ The molecular weight of **4** was determined by vapour-phase osmometry in chloroform at vary ing concentrations. For concentrations 7.6 - 140 mmol/l molecular weights ranging from 279 to 265 were obtained (calc. 281). The same measurements were made for 10. For concentrations 14.4-111.8 mmol/l molecular weights from 227 to 237 were found (calc. 238). In both cases only a slight influence of concentration on the molecular weight was observed, therefore no intermolecular association is assumed.
- ¹⁶⁾ The $\delta({}^{11}B)$ -values for 7 to 10 (Table 1) are in agreement with the shifts of similar boronates ${}^{17)}$
- ¹⁷⁾ R. H. Cragg and J. C. Lockhart, J. Inorg. Nucl. Chem. 31, 2282 (1969).
- ¹⁸⁾ The ¹³C NMR shifts of amines do not change appreciably by the formation of quarternary compounds (cf. Table 4).
- ¹⁹⁾ G. J. Martin, Nantes, France, unpublished result. We are grateful to Professor Martin fo these measurements and for helpful discussions.
- ²⁰⁾ M. Witanowski, L. Stefaniak, and G. A. Webb in G. A. Webb (ed.), Annual Reports on NMF
- Spectroscopy, Vol. 7, p. 117, Academic Press, London 1977.
 ^{21) 2}J_{HH} = 8.1 and 8.7 Hz in the OCH₂ groups of 8 and 10, respectively (see Table 1 fo formulae). ²J_{HH} = 12.5 to 12.8 Hz in the NCH₂ groups of N,N-dibenzylanilinium ions: A Mannschreck and H. Münsch, Tetrahedron Lett. 1968, 3227, and unpublished results. ²J_{HH} = 14.6 Hz in the NCH₂ groups of N-(2,6-dimethylphenyl)isoindolinium ion: A. Mannschreck and E. Keck, unpublished result.
- ²²⁾ The chemical shifts extrapolated to T_c , the linewidths in the absence of exchange, and th coupling constants ${}^{2}J_{HH}$ were taken into account using a diagram (*H. Friebolin, H. G Schmid, S. Kabuß*, and *W. Faißt*, Org. Magn. Reson. 1, 147 (1969)).

¹⁾ On the Chemistry of Binding Sites, Part I.

- ²³⁾ For example I. O. Sutherland in E. F. Mooney (ed.), Annual Reports on NMR Spectroscopy, Vol. 4, p. 71, Academic Press, London 1971.
- 24) D. H. R. Barton (ed.), Comprehensive Organic Chemistry, Vol. 3, p. 917, 926, Pergamon, Oxford 1979.
- ²⁵⁾ The above mentioned factor of 2 was applied.
- ²⁶⁾ Cf. M. Hollk and A. Mannschreck, Org. Magn. Reson. 12, 28 (1979).
- ²⁷⁾ A. L. Van Geet, Anal. Chem. 42, 679 (1970).
- 28) J. Bornstein, S. C. Lashua, and A. P. Boiselle, J. Org. Chem. 22, 1255 (1957).
- 29) W. König and W. Scharrnbeck, J. Prakt. Chem. 128, 162 (1930).
- 30) L. H. Klemm, W. Stalick, and D. Bradway, Tetrahedron 20, 1667 (1964).
- 31) N. A. Milas and S. Sussmann, J. Am. Chem. Soc. 58, 1302 (1936).
- ³²⁾ S. P. Bakshi and E. E. Turner, J. Chem. Soc. 1961, 168.
- 33) F. N. Peters, E. Griffith, D. R. Briggs, and H. E. French, J. Am. Chem. Soc. 47, 449 (1925).

[57/81]